If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2-14x+100=0
a = -4.9; b = -14; c = +100;
Δ = b2-4ac
Δ = -142-4·(-4.9)·100
Δ = 2156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2156}=\sqrt{196*11}=\sqrt{196}*\sqrt{11}=14\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{11}}{2*-4.9}=\frac{14-14\sqrt{11}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{11}}{2*-4.9}=\frac{14+14\sqrt{11}}{-9.8} $
| 3(2d-5)=75 | | 31-3x=3x-41 | | 3(4+3×)=2(2x-7) | | 5-13y=1-y | | 15=3*n/4 | | 3c+-5=13 | | k/3+-8=-4 | | -4(n+7)=12+6n | | 10x+18+14x-2=180 | | -2(-9y+5)-6y=2(y-2)-2 | | t/3-7=8 | | 6=3x-21-6x | | 118=6x-20 | | 3(x+3)-(2x-4)=14+2x | | 8*(5+n)=56 | | 5y-1=21+3y | | 2x+26=7x-8 | | (5x-10)+(2x-5)=180 | | 6x+16=15x-11 | | 6=2z+2 | | (7x)+(3x-4)=146 | | -10y+4=-12+22 | | 11(2y-4)-7=-14 | | -n+3.6-5n+4.4=-22 | | 11(-4+2y)-7=-14 | | 17p+-7p=-20 | | -3m+2+6m-4=7 | | 2x-4/2=3x | | 3(x-2)=4x=1 | | -4x=-3x-10 | | x+10=48x= | | 3(0.6+2n)-3.2=3.2=7.6 |